What is cybernetics?


Cybernetics
is the interdisciplinary study of the structure of regulatory systems. Cybernetics is closely related to control theory and systems theory. Both in its origins and in its evolution in the second-half of the 20th century, cybernetics is equally applicable to physical and social (that is, language-based) systems.

Contemporary cybernetics began as an interdisciplinary study connecting the fields of control systems, electrical network theory, mechanical engineering, logic modeling, evolutionary biology, neuroscience, anthropology, and psychology in the 1940s, often attributed to the Macy Conferences.

Sunday, March 15, 2009

Automated reasoning

Automated reasoning is an area of computer science dedicated to understanding different aspects of reasoning in a way that allows the creation of software which allows computers to reason completely or nearly completely automatically. As such, it is usually considered a subfield of artificial intelligence, but it also has strong connections to theoretical computer science and even philosophy.

The most developed subareas of automated reasoning probably are automated theorem proving (and the less automated but more pragmatic subfield of interactive theorem proving) and automated proof checking (viewed as guaranteed correct reasoning under fixed assumptions), but extensive work has also been done in reasoning by analogy induction and abduction. Other important topics are reasoning under uncertainty and non-monotonic reasoning. An important part of the uncertainty field is that of argumentation, where further constraints of minimality and consistency are applied on top of the more standard automated deduction. John Pollock's Oscar system is an example of an automated argumentation system that is more specific than being just an automated theorem prover. Formal argumentation is subfield of artificial intelligence.

Tools and techniques include the classical logics and calculi from automated theorem proving, but also fuzzy logic, Bayesian inference, reasoning with maximal entropy and a large number of less formal ad-hoc techniques.





No comments:

Post a Comment

Powered By Blogger